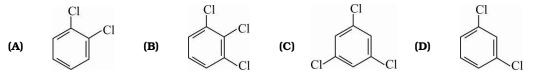


Miscellaneous Exercise Question Bank

1.				τ , two π bonds and the first two π bond pairs in		one pair of electr	rons in t	the valence shell of X. The
	(A)	Square pyrami		n as some pans.	(B)	Linear		
	(C)	Trigonal plana			(D)	Unpredictable		
2.	Among	g the following L	iCl, Be0	Cl ₂ , BCl ₃ , CCl ₄ w	hich wi	ill have the lowe	est melti	ng point and the highest
	solubil	lity in water.						
	(A)	CCl ₄ , LiCl	(B)	LiCl, CCl_4	(C)	$\mathrm{BeCl}_2,\mathrm{BCl}_3$	(D)	BCl_3 , BeCl_2
3.	The co	rrect order of po	larizabil	ity is :				
	Γ, Br̄,	Cl¯, F¯						
	(A)	$I^- > Br^- > Cl^- > 1$	F ⁻		(B)	$I^- > Br^- = CI^- >$	F^{-}	
	(C)	$\Gamma = Br^- = C\Gamma > 1$	F ⁻		(D)	$I^- = Br^- < Cl^- =$	F^{-}	
4.	The io	nic conductance	of which	n of the following	is the h	ighest?		
	(A)	Li⁺ (aq)	(B)	Na ⁺ (aq)	(C)	K⁺ (aq)	(D)	Cs ⁺ (aq)
5 .	Highes	st covalent chara	cter is fo	ound in				
	(A)	${\sf CaF}_2$	(B)	$CaCl_2$	(C)	CaBr_2	(D)	CaI_2
6.	The eff	fect of hydrogen l	bonding	is greatest in				
	(A)	HF	(B)	NH_3	(C)	$\mathrm{CH_3NH_2}$	(D)	$\mathrm{H_2O}$
7.	If Na+	ion is larger tha	n Mg ²⁺	ion and S^{2-} ion i	s larger	than Cl ⁻ ion, w	hich of	the following will be more
	covale	nt?						
	(A)	NaCl	(B)	Na_2S	(C)	MgCl_2	(D)	MgS
8.	The ty	pe of hybrid orbi	tals use	d by chlorine ato	m in Cl	O_2^- is		
	(A)	sp^3	(B)	sp^2	(C)	sp	(D)	dsp^2
9.	Which	of the following	has a ne	et dipole moment	?			
	(A)	I_2Cl_6	(B)	${ m XeO}_2{ m F}_4$	(C)	$\mathrm{Al_2Cl_6}$	(D)	$\mathrm{PF_3Cl}_2$
10.	As the	s-character of h	vbridise	d orbital increase				
	(A)	the bond angle			(B)	the electroneg	ativity in	icreases
	(C)	the bond lengtl			(D)	All of the abov	•	
11.	The tv	pe of bonds pres	ent in C	uSO₄.5H₀O are				
	(A)			and coordinate	(B)	electrovalent a	ınd coval	lent
	(C)	electrovalent a			(D)	covalent and c		
12 .	PCl ₅ ex	xists but NCl5 do	es not b	ecause				
	(A)	Nitrogen has n			(B)	NCl ₅ is unstab	le	
	(C)	Nitrogen atom	is much	smaller than P	(D)	Nitrogen is hig	thly iner	t


(C)

 $NH_3 < BF_3 < NF_3$


13.	Dipol (A) (C)	e moment is exh 1, 4 – dichlor 1, 3, 5 - trich	o benzer	ne	(B) (D)	1,2 – dichloro		e
14.	The p	cair of species ha	aving ide (B)	ntical shape is PCl ₃ , BF ₃	(C)	$\mathrm{XeF}_{2},\mathrm{CO}_{2}$	(D)	PF_5 , IF_5
15.	KF co	mbines with HF	`to form	KHF ₂ . The comp	ound co	ntains the speci	es	
	(A)	$K^{+}, F^{-} \& H^{+}$	(B)	$K^{+}, F^{-} \& HF$	(C)	K^{+} & $[HF_{2}]^{-}$	(D)	[KHF] ⁺ & F ⁻
16.	The h	ybridization of I	o in phos	sphate ion (PO $_4^{3-}$) is the s	same as in		
	(A)	I in ICl_4^-	(B)	S in SO_3	(C)	N in NO_3^-	(D)	S in SO_3^{2-}
17.	Whiel	h ion has the hig	ghest pol	arising power?				
	(A)	${\rm Mg}^{2+}$	(B)	Al^{3+}	(C)	Ca ²⁺	(D)	Na ⁺
18.	The c	orrect order of d	lecreasin	g polarisability o	of ion is			
	(A)	$P^{3-} < N^{3-}$	(B)	$S^{2-} < O^{2-}$	(C)	$Se^{2-} > S^{2-}$	(D)	$F^- > I^-$
19.	Whiel	h of the following	g is least	ionic?				
	(A)	AgCl	(B)	KCl	(C)	$BaCl_2$	(D)	$CaCl_2$
20.	Amor	ng the following i	molecule	s, N–Si bond len	gth is sh	ortest in :		
	(A)	$N(SiH_3)_3$			(B)	$\mathrm{NH}(\mathrm{SiH}_3)_2$		
	(C)	$\mathrm{NH_2}(\mathrm{SiH_3})$			(D)	All have equa	al bond le	ength
21.	Moleco (A) (B) (C) (D)	Same with 1, Different with	0 and 1 1 and 1 1 0, 1 and	and XeF ₄ are : lone pairs of ele lone pairs of ele d 2 lone pairs of d 2 lone pairs of	ctrons re	espectively s respectively		
22 .	The s	pecies having be	ent T-sha	ape is :				
	(A)	SCl_2	(B)	SF_3^-	(C)	XeO_3	(D)	BF_3
23.			involved	l in formation of				
	(A) (C)	paired unpaired witl	h opposi	te enin	(B) (D)	unpaired with in ground sta		pin
24.	The a	mount of energy		_		C		packing of gaseous ions is
	called (A)	Ionisation en	ergv		(B)	Solvation ene	ergy	
	(C)	Lattice energ			(D)	Hydration en	•	
25 .	Whiel	h is the correct s	sequence	regarding the d	ipole mo	ment of BF_3 , NH	I ₃ and NF	r ₃ ?
	(A)	$BF_3 = NH_3 =$	NF_3		(B)	$BF_3 < NF_3 < N$	NH_3	

(D)

 $\mathrm{NF_3} < \mathrm{BF_3} < \mathrm{NH_3}$

26. Which of the following has least dipole moment?

27. The electronegativity difference between two elements A and B is 0.2 The magnitude of percentage ionic character in single A – B bond would be :

- **(A)** 4.45
- (B)
- 3.34
- **(C)** 17.8
- **(D)** 26.7

28. Which of the following species is/are paramagnetic NO_2 , NO, N_2O_4 , N_2O_5 ?

- (A) Only NO_2
- **(B)** NO_2 , NO
- (C) NO, NO $_2$, N $_2$ O $_5$ (D)
- All are paramagnetic

29. Bond order of CO_3^{2-} species is :

- **(A)** 1.5
- **(B)** 1.33
- **(C)** 1.75
- **(D)** 1.25

30. Paramagnetism is not shown by :

- (A) O_2^-
- **(B)** H₂⁺
- (C) O₂
- **(D)** O_2^{2-}

31. The order of increasing bond length in F_2 , Cl_2 , N_2 and O_2 is :

(A) N_2, O_2, Cl_2, F_2

(B) N_2 , O_2 , F_2 , Cl_2

(C) O_2 , N_2 , Cl_2 , F_2

 $\textbf{(D)} \qquad \quad \mathrm{N_2, \ Cl_2, \, O_2 \, , \, F_2}$

32. Among the four molecules, HF, CH₄, CH₃OH and N₂O₄, intermolecular hydrogen bonding is expected:

(A) In all the molecules

- **(B)** In all expect one molecule
- **(C)** In two of the molecules
- **(D)** In none of the molecules

33. For resonance structure a molecule may not have :

- (A) Identical arrangement of atoms
- Nearly same energy contents
- **(C)** The same number of paired electrons
- **(D)** Identical bonding

34. The non-linear structure is assumed by :

- (A) SnCl₂
- **(B)** NCO⁻
- (C) NO_2^+
- (D) CS_2

35. The bonds present in N_2O_5 are :

(A) only ionic

(B)

(B)

covalent and coordinate

(C) only covalent

(D) covalent and ionic

 $\textbf{36.} \qquad \text{The geometric form of crystals is the result of orderly arrangement of}:$

- (A) m
- molecules only (B)
- ions only
- (C) atoms only

3

(D) any of the above

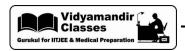
37. Number of water molecules directly attached to one water molecule is:

- (A)
- 1
- (B)
- (C)
- **(D)** 4

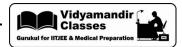
38. The bond order in O_2^+ is the same as in

- (A)
- N_2^+
- (B)

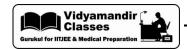
(B)


- (C)
- СО
- **(D)** NO⁺

39. The diamagnetic molecules are


- (A) B_2, C_2, N_2
- O_2, N_2, F_2

CN-


- (C) C_2 , N_2 , F_2
- (D)
- B_2, O_2^{2-}, N_2

40 .	Intran	nolecular H–bond	ling is p	resent in				
	(A)	o–nitrophenol	(B)	Salicylaldehyd	e (C)	m-nitrophenol	(D)	Both (A) and (B)
41.	Which	of the following	stateme	ents is correct for	NO ₃ io	on?		
	(A)	Sum of the for	mal cha	arges = +1	(B)	Formal charge	on one	of the oxygen atom = -2
	(C)	Formal charge	on nitr	ogen atom = +1	(D)	Average forma	l charge	on oxygen atom = $-\frac{1}{3}$
42 .	An ele	ctrovalent compo	ound do	es not exhibit sp	ace ison	nerism because o	f:	
	(A)	Presence of op	positive	ly charged ions	(B)	High melting p	oints	
	(C)	Non-directiona	l natur	e of the bond	(D)	Crystalline nat	ture	
43 .	Two el	lements A and B	have fo	llowing electronic	configu	ıration.		
	A = 1s	$s^2 2s^2 2p^6 3s^2$						
	B = 1s	$2^2 2 s^2 2 p^6 3 s^2 3 p^3$						
	If expe	ected compound	formed	by A and B is A _x	B _y the	n sum of x and y	is:	
	(A)	2	(B)	3	(C)	4	(D)	5
44.	In whi	ch of the followir	ng ionic	compounds, ΔH	f is neg	ative only due to	lattice e	nergy?
	(i)	NaF	(ii)	MgO	(iii)	Li ₃ N	(iv)	Na ₂ S
	(A)	Only (iv)			(B)	Only (iii), (iv)		
	(C)	Only (ii), (iii), (i	v)		(D)	All of these		
45 .	Which	of the following	is an ex	cample of super o	ctet mo	lecule?		
	(A)	${ m ClF}_3$	(B)	PCl_5	(C)	IF_7	(D)	All the three
46 .	Which	bond is expected	d to be	the least polar?				
	(A)	O-F	(B)	P - F	(C)	Si - N	(D)	B — F
47 .	Which	of the following	overlap	s gives σ – bond	along x	- axis as intern	ıclear a	xis?
	(A)	$\boldsymbol{p}_{\boldsymbol{z}}$ and $\boldsymbol{p}_{\boldsymbol{z}}$	(B)	s and $\boldsymbol{p}_{\boldsymbol{z}}$	(C)	s and p_{y}	(D)	$d_{x^2-y^2}^{}$ and $d_{x^2-y^2}^{}$
48 .	Give t	he correct order	of initia	als T or F for foll	owing s	tatements. Use T	`if state	ment is true and F if it is
	false:							
	(I)	The order of re	pulsion	between differen	ıt pair o	f electrons is l_p –	$l_p > l_p$	$-b_p > b_p - b_p$
	(II)	In general, as	the nun	nber of lone pair	of electr	ons on central at	om incr	eases, value of bond angle
			_	gle also increases				
	(III)	The number of	lone pa	air of electrons or	n O in F	I ₂ O is 2 while on	N in N	H_3 is 1
	(IV)	The structure VSEPR theory	of xeno	n fluorides and	xenon o	xyfluorides could	l not be	explained on the basis of
	(A)	TTTF	(B)	TFTF	(C)	TFTT	(D)	TFFF

49 .	Which	h of the following	g compoi	unds is planar an	d non-p	oolar?		
	(A)	${\rm XeO}_4$	(B)	SF_4	(C)	XeF_4	(D)	CF_4
50 .	Low n	nelting point is e	expected	for:				
	(A)	Ionic solid	(B)	Metallic solid	(C)	Molecular solid	(D)	Covalent solid
51.	Which	h substance has	the high	nest melting point	?			
	(A)	CO	(B)	CO_2	(C)	SiO_2	(D)	P_2O_5
52 .	Carbo	on dioxide is gas	, while S	SiO_2 is solid at roo	m temp	perature because:		
	(A)	CO ₂ is a linea	ır molecı	ule, while ${ m SiO}_2$ is a	angular			
	(B)	van der Waal	s' forces	are very strong in	${ m SiO}_2$			
	(C)	CO ₂ is covale	nt, while	${ m SiO_2}$ is ionic				
	(D)	Si cannot for	m stable	bonds with O, he	nce Si l	has to form a 3D l	attice	
53 .	In pro	otonation of H ₂ C) , chang	ge occur in :				
	(A)	Hybridisation			(B)	Shape of molec	ule	
	(C)	Hybridisation	and sha	ape both	(D)	None of these		
54 .	The c	orrect order of 'S	5—O' boı	nd length is:				
	(A)	$SO_3^{2-} > SO_4^{2-}$	> SO ₃ >	SO_2	(B)	$SO_3^{2-} > SO_4^{2-} >$	SO ₂ >	SO_3
	(C)	$SO_4^{2-} > SO_3^{2-}$	> SO ₂ >	SO_3	(D)	$SO_4^{2-} > SO_3^{2-} >$	SO ₃ >	SO_2
55.	A mo	lecule may be i	represen	ted by three stru	ictures	having energies	$\mathbf{E}_1, \mathbf{E}_2$	and E_3 respectively. The
	energ	ies of these str	ructures	follow the order	r E ₃ < 1	$E_2 < E_1$. If the expression	xperime	ental bond energy of the
		cule is E ₀ , the r						
	(A)	$(E_1 + E_2 + E_3)$	$-E_0$		(B)	$E_0 - E_3$		
	(C)	$E_0 - E_1$,		(D)	$E_0 - E_2$		
56 .	Resor	nance structures	s can be	written for :				
	(A)	O_3	(B)	NH_3	(C)	CH_4	(D)	$\mathrm{H_2O}$
57 .	The s	hapes of nitrite	and nitri	ile respectively are	e:			
	(A)	Linear and ar	ngular		(B)	Angular and lin	ıear	
	(C)	Both angular	,		(D)	Both linear		
58 .	∠FAs	F bond angle in	AsF ₃ Cl ₂	molecule is :				
	(A)	90° and 180°	(B)	120°	(C)	90°	(D)	180°
59 .	The s	tability of ionic o	erystal p	rincipally depend	s on:			
	(A)	high electron	affinity (of anion forming s	species			
	(B)	the lattice en	~	•				
	(C)	low I.E. of cat						
	(D)	low heat of su	ublimatio	on of cation formi	ng solid			

60.	Which	one is correct f	or bond	angle?					
	(A)	$PF_3 > PCl_3$	(B)	$OCl_2 = ClO_2$	(C)	$NF_3 > NH_3$	(D)	$PCl_3 > PF_3$	
*61.	Which	n of the following	stateme	ents is/are incorr	rect?				
	(A)	Bond order ca	ın never	be fractional					
	(B)	When bond o	rder is $-\frac{1}{2}$	 -species exists bi 2	ut is un	stable			
	(C)	Bond order in	CO is 3	•					
	(D)	Greater the b	ond orde	er lesser is the bo	nd disso	ociation energy			
62 .	Which	n is distilled first	?						
	(A)	Liquid H_2	(B)	${\rm Liquid}~{\rm CO_2}$	(C)	Liquid O_2	(D)	Liquid N_2	
63.	The m	nolecule which p	ossesses	s both sp ³ and sp ³		idisation is :			
	(A)	Solid PCl ₅	(B)	Gaseous PCl ₅	(C)	PCl_4^+	(D)	PCl ₆	
64.	There	is no S – S bono	d in :						
	(A)	$S_2^{}O_4^{^{2-}}$	(B)	${ m S_2O_6}^{2-}$	(C)	$S_2O_3^{\ 2-}$	(D)	$S_2^{}O_7^{^{2-}}$	
65 .	Which	n of the following	g compou	unds of Group IV	element	ts would you exp	pect to be	e most ionic in charact	er?
	(A)	CF_4	(B)	SiO_2	(C)	SiC	(D)	PbF_2	
66.	In for	ming (i) $N_2 \rightarrow N_2$	and (ii) $O_2 \rightarrow O_2^+$; the el	lectrons	respectively are	removed	l from	
	(A)	$\left(\pi^* 2p_y \text{ or } \pi^* 2\right)$	$\left(\mathbf{p_x}\right)$ and	$\Big(\pi^*2p_y \ or \ \pi^*2p_x$	(B)	$\left(\pi 2p_{y}\text{ or }\pi 2p\right)$	$(\mathbf{p}_{\mathbf{x}})$ and $(\mathbf{p}_{\mathbf{x}})$	$\pi 2p_y$ or $\pi 2p_x$	
	(C)	$\left(\sigma 2p_{z}\right)$ and $\left(\pi\right)$	*2p_y or	$\pi^* 2p_{_{\mathbf{X}}} \Big)$	(D)	$(\pi^* 2p_y \text{ or } \pi^* 2p_y)$	$2p_{x}$ and	$\left(\pi 2p_y \ or \ \pi 2p_x\right)$	
67.	N ₂ and	d ${\rm O}_2$ are convert	ed into 1	$\mathrm{N}_2^{\scriptscriptstyle +}$ and $\mathrm{O}_2^{\scriptscriptstyle +}$ respe	ctively.				
	Which	n of the following	g is not c	correct?					
	(A)	In N_2^+ , the N	– N bon	d weakens	(B)	In O_2^+ , O – O	bond ord	ler increases	
	(C)	In O_2^+ , param	agnetisr	n decreases	(D)	N_2^+ becomes	diamagn	etic	
68.	In wh	ich of the follow	ing mole	cular species bot	h types	of dative bonds	(σ and π)	are present?	
	(A)	BF_4^- ?	(B)	$\mathrm{Be_2Cl_4}$	(C)	NH_{4}^{+}	(D)	$\lceil \mathrm{BeF}_4 \rceil^{2-}$	
69.	The fl	uorine molecule	is forme			•			
	(A)	p-p orbitals		·	(B)	p-p orbitals	s (end-to-	end overlap)	
	(C)	sp – sp orbita	ıls		(D)	s-s orbitals			
70.	Numb	per of S—S bor	nds is H	₂ S ₂ O ₆ :					
	(A)	n	(B)	(n-1)	(C)	(n - 2)	(D)	(n+1)	
*71.	Which	n of the following	stateme	ents are correct a	bout su	lphur hexafluor	ide?		
	(A)	all S — F bon				•			
	(B)	SF ₆ is a plana	r moelcı	ule					
	(C)	oxidation nur	nber of s	sulphur is the sar	ne as nı	umber of electro	ns of sul	phur involved in bondi	ing
	(D)	sulphur has a	cauired	the electronic str	ructure	of the gas argon			

								Gurukul for IITJEE &	Medical Preparation
*72.	Most i	onic compound	s have						
	(A)	high melting		nd low b	oiling points				
	(B)				lirectional bond	s			
	(C)		-		nts and low sol		non-polar s	solvents	
	(D)	_							the molten state.
*73.	To whi	ich of the follow	ing spec	ies is the	e octet rule not	applicable	?		
	(A)	BrF_3	(B)	SF_6	(C)	IF_7	(D) CO	
*74.	Which	of the following	g species	have π	bonds accordin	g to MOT '	?		
	(A)	${\rm B}_2$	(B)	C_2	(C)	O_2^{4-}	(D) HF	
*75.	Bond a	angle in PH3 is :							
	(A)	much less tha	an NH ₃		(B)	much l	less than PF	r_3	
	(C)	slightly more	than NH	:3	(D)	much i	more than F	PF_3	
*76.	Which	one or more an	nong the	followin	ng involve(s) p_{π} -	d_{π} bondin	g?		
	(A)	(SiH ₃) ₃ N:		(B)	(CH ₃) ₃ N:	(C)	: CCl ₃	(D)	С. С
*88		0.0	. 1 C		0 0		3	, ,	3
*77.		of the following				a a ?-	-		
	(A)	O_2^-	(B)	NO	(C)	CO_3^{2-}	(D) CO ₂	
*78.	The m	olecule having o	one unpa	aired elec	ctron is :				
	(A)	NO	(B)	${\rm B}_2$	(C)	NO_2	(D	O ₂	
*79.	Which	of the following	g arrange	ement co	orrectly represer	nt the decre	easing orde	r of bond an	gles?
	(A)	$NH_3 > PH_3 >$	AsH ₃		(B)	$NH_3 >$	$H_2O > F_2$	О	
	(C)	$NO_2^+ > NO_2^- >$	NO_2		(D)	CH ₄ >	$NH_3 > H_2$	0	
*80.	Select	the correct stat	ements:						
	(A)	the heat of h	ydration	of the	dipositive alkali	ne earth i	metals ions	decrease w	ith an increase in
		their ionic siz	e.						
	(B)	hydration of a	ılkali me	tal ions	is less than tha	t of IIA			
	(C)					_	_		rt a much stronger
					oxygen of water	molecule	surroundin	g them.	
	(D)	melting point NaF > NaCl >			es follow order				
		C 11 C 11 .							

 $\pmb{*81.} \qquad \text{Which of the following molecules have intermolecular hydrogen bonds?}$

(A) KH_2PO_4

(B) H_3BO_3

(C) $C_6H_5CO_2H$

(D)

 CH_3OH

*82. $C_6H_5CO_2H$ forms a dimer in benzene solution because

(A) of molecular association in benzene which occurs through the intermolecular hydrogen bond

(B) of the strong van der Waals force between two molecules of C₆H₅CO₂H

(C) a pair of carboxylic acid molecules are held by two hydrogen bonds

(D) none of these

*83. If AB₄ⁿ, types species are tetrahedral, then which of the following is/are correctly matched? (Where A is central atom, B is surrounding atom and n is charge on species).

	A	В	n
(A)	Xe	O	0
(B)	Se	F	0
(C)	P	O	-3
(D)	N	Н	+1

*84. Which of the following combinations of orbitals do/does not form bond (if x-axis is internuclear axis)?

(A) $s + p_z$

s + s

(C)

 $p_z + p_x$

Ca, O

 $d_{xy} + p_y$

***85.** Which pair(s) can form 'XY' type compound?

(A) Al, P

(B) Mg, N

(B)

(C)

(D)

Na, F

Assertion (column - I)

Reason (column - II)

86. Na_2SO_4 is soluble in water while BaSO_4 is insoluble.

Lattice energy of ${\rm BaSO_4}$ is higher than its hydration energy.

Use the following key to choose the appropriate answer.

- (A) If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- **(B)** If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- **(C)** If assertion is correct, but reason is incorrect.
- **(D)** If assertion is incorrect, but reason is correct.

87. Among LiCl, BeCl₂, BCl₃ & CCl₄ the covalent bond character follows the order

(A) $LiCl > BeCl_2 > BCl_3 > CCl_4$

(B) LiCl < BeCl₂ < BCl₃ < CCl₄

(C) $LiCl > BeCl_2 > CCl_4 > BCl_3$

(**D**) LiCl < BeCl₂ < BCl₃ > CCl₄

Column-I and Column-II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

88. Match column I (species) with column II (Hybridisation) and select the correct answer using the codes given below.

0			
	Column-I		Column-II
(A)	BCl ₃	(P)	sp^3
(B)	NH_3	(Q)	$\mathrm{sp}^{3}\mathrm{d}^{2}$
(C)	PCl ₅	(R)	sp^2
(D)	XeF ₄	(S)	sp ³ d

89. Match the column:

	Column-I (Bond order range)	Column-II (Oxyanions)		
(A)	1.0 to 1.30	(P)	NO_3^-	
(B)	1.31 to 1.55	(Q)	ClO ₄	
(C)	1.56 to 1.70	(R)	PO ₄ ³⁻	
(D)	1.71 to 2.0	(S)	ClO ₃	
		(T)	SO ₄ ²⁻	

90. Match the column:

	Column-I	Column-II			
(A)	$B_{3}N_{3}H_{6}$	(P)	Planar geometry		
(B)	I_3^-	(Q)	Non-planar geometry		
(C)	B ₂ Cl ₄ (Solid)	(R)	Compound having coordinate bond		
(D)	SiF ₄	(S)	Compound having back bond		
		(T)	Non-polar compound		

91. Match the column:

	Column-I		Column-II			
(Axial/sideways combination of			(Types of molecular orbital)			
appropriate/inappropriate pure orbitals)						
(A)	p + p pure orbitals	(P)	σ – bonding molecular orbital			
(B)	s + p pure orbitals	(Q)	π – anti-bonding molecular orbital			
(C)	(non-axial) d + p pure orbitals	(R)	σ – anti-bonding molecular orbital			
(D)	(axial) d + p pure orbitals	(S)	π – bonding molecular orbital			
		(T)	Non-bonding molecular orbital			

Paragraph for Question No. 92 - 94


According to V.B.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

- 92. Which of the following orbital combinations does not form π – bond?
 - (A) $p_x + p_x$ sideways overlapping
- $d_{2}^{2} + p_{V}$ sideways overlapping
- (C) $d_{xy} + d_{xy}$ sideways overlapping
- $d_{vz} + p_v$ sideways overlapping (D)
- 93. Which of the following orbitals can form σ – bond ? (z-axis is internuclear axis)
 - (A) p_x orbital
- p_y orbital (B)
- d_{2} orbital **(D)** (C)
 - d_{zx} orbital
- 94. Which of the following combination of orbitals does not form any type of covalent bond (If z-axis is molecular axis)?
 - (A) $p_z + p_z$
- $p_y + p_y$
- (C) $d_{z^2} + d_{xy}$
- (D) s + s

Paragraph for Question No. 95 - 97

According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping, higher will be the bond energy.

- 95. The incorrect order of bond dissociation energy will be:
 - H H > Cl Cl > Br Br(A)
- **(B)** Si - Si > P - P > Cl - Cl
- (C) C - C > N - N > O - O
- (D) H - Cl > H - Br > H - I

96. Which of the following combinations of orbitals does not form covalent bond (x-axis is inter nuclear axis):

(A) s + p

 $p_v + p_v$

(C)

 $d_{yz} + d_{y}$

 $d_{xy} + d_{xy}$

97. Which of the following compounds does not contain $p\pi - p\pi$ bond?

(A)

 SO_3

(B)

 NO_3^-

(C)

 SO_4^{2-}

(D)

 CO_3^{2-}

Paragraph for Question No. 98 - 100

The intermolecular forces of attraction (i.e. H-bonding and van der Waals' forces) exist among polar and non-polar species which affect melting point, boiling point, solubility and viscosity of covalent compounds:

98. Melting and boiling point of halogens increase down the group due to :

(A) Increase in London forces

(B) Increase in extent of polarity

(C) Increase in molecular mass

(D) Both (A) and (C)

99. The type of molecular force of attraction present in the following compound is :

(A) Intermolecular H-bonding

(B) Intramolecular H-bonding

(C) Van der Waals' force

(D) All of these

100. Select the incorrect order of boiling point between the following compounds :

(A) $N_3H < CH_3N_3$

(B) $Me_2SO_4 < H_2SO_4$

(C) $Me_3BO_3 < B(OH)_3$

(D) $BF_3 < Bl_3$